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Abstract Autonomous participants, however, do not collaborate
This paper focuses on load management in IOOself(_)rthe benefit of the whole system, but rather aim to max-
pap 9 ¥ ize their own benefit. A natural way to architect a fed-

coupled federated distributed systems. We present a dig)

tributed mechanism for moving load between autonomouesr""ted system is thus azamputational economyvhere

participants using bilateral contracts that are negaiiateo art|C|pants_ provide resources and perform computing for
each other in exchange for paymént.

offline and that set bounded prices for moving load. We . .
When autonomous participants are also real economic

show that our mechanism has good incentive properties, ... . . .
9 prop htities, additional constraints come into play. The pop-

efficiently redistributes excess load, and has a low oveﬁ_larit of bilateral agreements between Internet Service
head in practice. Y 9

Our load management mechanism is especially Welf_’rowders (ISPs) demonstrates that participants value and

suited for distributed stream-processing applicatioms, even require privacy in their interactions with each other.

. : : o aThey also practice price and service discrimination [24],
emerging class of data-intensive applications that emplo\)6here they offer different qualities of service and diffetre
a “continuous query processing” model. In this model, . . )

streams of.data are processed and con_1posed continum{%rlf et)SiI;ct)e(:glfeSrzrr]\t/iE:rf_ne?/r; :g:etgﬁepnli;pcxﬁé:thseflséaet_)
as they arrive rather than after they are indexed and storer'cl‘fie confidential details of theustomSLA and prices that

We have implemented the mechanism in khedusadis-
: : Qe partner offers another.
tributed stream processing system, and we demonstrate its : L .
In this paper, we present a distributed mechanism for

roperties using simulations and experiments. . . o
prop 9 P managing load in a federated system. Our mechanism is
inspired on the manner in which ISPs collaborate. Unlike
other computational economies that implement global

Many distributed systems are composed of |005e|91arkets to set resource prices at runtime, our mechanism
coupled autonomous nodes spread across different admifi0ased orprivate pairwise contractsiegotiated offline
istrative domains. Examples of such federated systenR§tween participants. Contracts set tighthunded prices
include Web services, cross-company workflows wherfor migrating each unit of load between two participants
the end-to-end services require processing by differe@nd specify the set of tasks that each is willing to execute
organizations [3, 21], and peer-to-peer systems [8, 28N behalf of the other. We envision that contracts will be
30, 45]. Other examples are computational grids confXxtended to contain additional clauses further customiz-
posed of computers situated in different domains [4, 180 the offered services (e.g., performance and avaitgbili
44), overlay-based computing platforms such as Plane@uarantees). In contrast to previous proposals, our mecha-
lab [35], and data-intensive stream processing systems [2ism (1) provides privacy to all participants regarding the
2,5, 6, 7] that can be distributed across different domairfi€tails of their interactions with others, (2) facilitatees-
to provide data management services for data streams. Vice customization and price discrimination, (3) provides

Federated operation offers organizations the opport@ Simple and lightweight runtime load management using
nity to pool their resources together for common benePrice pre-negotiation, and (4) has good system-wide load
fit. Participants can compose the services they providealance properties.
into more complete end-to-end services. Organizations With this bounded-price mechanisntuntime load
can also cope with load spikes without individually haviransfers occur only between participants that have pre-
ing to maintain and administer the computing, networkNegotiated contracts, and at a unit price within the con-

and storage resources required for peak operation. tracted range. The load transfer mechanism is simple: a
participant moves load to another if the local processing

cost is larger than the payment it would have to make to

1 Introduction

*This material is based upon work supported by the Nationiginge
Foundation under Grant No. 0205445. Any opinions, findilagsl con-
clusions or recommendations expressed in this materighase of the
author(s).and,do,net:necessarilyreflecttheviews of theodatiScience INon-payment models, such as bartering, are possible tanS&e-
Foundation. tion 2 for details.
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another participant for processing the same load (plus tlexchange load among themselves producing successively
migration cost). less costly allocations. In contrast to these approaches,
Our work is applicable to a variety of federated syswe focus on environments where participants are directed
tems, and is especially motivated bistributed stream by self-interest and not by the desire to produce a system-
processing applications In these applications, data wide optimal allocation.
streams are continuously pushed to servers, where they As recent applications frequently involve indepen-
undergo significant amounts of processing including fildently administered entities, more efforts have started to
tering, aggregation, and correlation. Examples of applieonsider participant selfishness. In mechanism design
cations where this “push” model for data processing i§MD) [20, 33], agents reveal their costs to a central en-
appropriate include financial services.d, price feeds), tity that computes the optimal allocation and a vector of
medical applicationse(g, sensors attached to patients),compensating payments. Agents seek to maximize their
infrastructure monitoringd.g, computer networks, car utility computed as the difference between payment re-
traffic), and military applicationse(g, target detection). ceived and processing costs incurred. Allocation and pay-
Stream processing applications are well-suited to thement algorithms are designed to optimize agents utility
computational economy provided by a federated systemuhen the latter reveal their true costs.
Data sources are often distributed and belong to different In contrast to pure mechanism design, algorithmic
organizations. Data streams can be composed in diffemechanism design (AMD) [29, 32] additionally consid-
ent ways to create various services. Stream processiegs the computational complexity of mechanism imple-
applications also operate on large volumes of data, witimentations. Distributed algorithmic mechanism design
rates varying with time and often exceeding tens of thouDAMD) [12, 14] focuses on distributed implementations
sands of messages per second. Supporting these applichmechanisms, since in practice a central optimizer may
tions thus requires dynamic load management. Finalljot be implementable. Previous work on DAMD schemes
because the bulk of the processing required by applicincludes BGP-based routing [12] and cost-sharing of mul-
tions can be expressed with standard well-defined opeteast trees [13]. These schemes assume that participants
ators, load movements between autonomous participarusrrectly execute payment computations. In contrast, our
does not require full-blown process migration. load management mechanism is an example of a DAMD
We have designed and implemented the bounded-priseheme that does not make any such assumption because
mechanism inMedusa a federated distributed stream-it is based on bilateral contracts.
processing system. Using analysis and simulations, we Researchers have also proposed the use of economic
show that the mechanism provides enough incentives forinciples and market models for developing complex dis-
selfish participants to handle each other’s excess load, irtributed systems [27]. Computational economies have
proving the system’s load distribution. We also show thalbeen developed in application areas such as distributed
the mechanism efficiently distributes excess load whedatabases [43], concurrent applications [46], and grid
the aggregate load both underloads and overloads to@mputing [4, 16, 44]. Most approaches use pricing [4,
system capacity and that it reacts well to sudden shifts i, 15, 16, 39, 43, 46]: resource consumers have differ-
load. We show that it is sufficient for contracts to specifyent price to performance preferences and are allocated a
a small price-range in order for the mechanism to produdaudget. Resource providers hold auctions to determine
acceptable allocations where (1) eitlmerparticipant op- the price and allocation of their resources. Alternatiyely
erates above its capacity, or (2) if the system as a whotesource providers bid for tasks [39, 43], or adjust their
is overloaded, theall participants operate above their ca-prices iteratively until demand matches supply [15].
pacity. We further show that the mechanism works well These approaches to computational economies require
even when participants establish heterogeneous contraptticipants to hold and participate in auctions for every
at different unit prices with each other. load movement, thus inducing a large overhead. Variable
We discuss related work in the next section. Section Bad may also make prices vary greatly and lead to fre-
presents the bounded-price load management mechanigoent re-allocations [15]. If the cost of processing clisste
and Section 4 describes its implementation in Medusaf tasks is different from the cumulative cost of indepen-
We present several simulation and experimental results gent tasks, auctions become combinatorial [312,34]m-

Section 5 and conclude in Section 6. plicating the allocation problem. If auctions are held by
overloaded agents, underloaded agents have the choice to
2  Related Work participate in one or many auctions simultaneously, lead-

ing to complex market clearance and exchange mecha-
Cooperative load sharing in distributed systems hagisms [29]. We avoid these complexities by bounding
been widely studied (see,g, [10, 19, 22, 25, 41]). Ap-
proaches most similar to ours produce optimal or near- 2|n 5 combinatorial auction, multiple items are sold conentty. For
optimal allocations usingradient-descentwvhere nodes each bidder, each subset of these items represents a diftedae.
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the variability of runtime resource prices and serializ- 1k i ‘

. ; . Cost Function D;

ing communications between partners. In contrast to our 2k N

approach, computational economies also make it signif- Load Level, X, for which MC = Pric

) o - i % 100 .,

|c¢'_;1ntly more difficult for_ participants _to offer different 8 Load Levels within_|

prices and different service levels to different partners. s 8f Bounded-Price Rangg -
As an alternative to pricing, recent approaches pro- ~ 6k '/ brice

pose to base computational economies hmartering x | Per Unit

SHARP [17] is an infrastructure that enables peers to se- 4 | Marginal Cost (m) Lo h

curely exchange tickets that provide access to resources. 2F .

SHARP does not address the policies that define how 0 ‘ ‘ S

the resources should be exchanged. Céual.[8] pro- 05 06 07X, 08 X 09

. . P t Utilizati Load
pose a computational economy based on SHARP. In their ercent Utiization (Loac)

system, peers discover required resources at runtime and
trade resource tickets. A ticket is a soft claim on resources
and can be rejected resulting in zero value for the holder.
In contrast, our pairwise agreements do not specify anyheretaskset; is the subset of tasks it running ats.
resource amounts and peers pay each other only for tiis cost depends on the load imposed by the tasks. Each
resources they actually use. participant monitors its own load and computes its pro-

Service level agreements (SLAS) are widely used focessing cost. There are an unlimited number of possible
Web services and electronic commerce [3, 21, 37]. Theost functions and each participant may have a different
contract model we propose fits well with these SLA in-one. We assume, however, that this cost lm@otonic
frastructures. andconvexfunction. Indeed, for many applications that

In P2P systems, peers offer their resources to eaghiocess messages (e.g., streams of tuples), an important
other for free. Schemes to promote collaboration useost metric is the per message processing delay. For most
reputation [23], accounting [45], auditing [30], or strat-scheduling disciplines this cost is an increasing and con-
egyproof computing [28] to eliminate “free-riders” who vex function, reflecting the increased difficulty in offegin
use resources without offering any in return. In contrastow delay service at higher load. Figure 1 illustrates such
we develop a mechanism for participants that require tighost function for a single resource. We revisit Figure 1
control over their collaborations and do not offer their refurther throughout the section.

Figure 1:Prices and processing costs.

sources for free. Participants are selfish and aim to maximize their util-
ity, computed as the difference between the processing
3 The Bounded-Price Mechanism cost, D; (taskset;), and the payment they receive for that

processing. When a task originates at a participant, it

In this section, we define the load management proklyas 5 constant per-unit load value to that participant (this

lem in federated distributed systems, present the boundegl e could be, for instance, the price paid by the partic-
price mechanism and discuss its properties. ipant's clients for the processing). When a task comes
3.1 Problem Statement from another participant, the payment made by that par-
ticipant defines the task’s value.
Each participant has a maximum load level corre-
and storage resources, and a time varyingfSesf het- spondmg tp a maximum cost, above which the participant
. g ., considers itself overloaded. The goal of a load manage-
erogeneousasksthat impose a load on participants’ re- o - ;
ment mechanism is to ensure that no participant is over-

sources. Each task is considered to originate at a partiql- . .
L . . ; oaded, when spare capacity exists. If the whole system
pant where it is submitted by a client. Since we only ex: ) .
L ) " is overloaded, the goal is to use as much of the available
amine interactions between participants, we use the terms__ . ; .
. ) capacity as possible. We seek a mechanism that produces
participantandnodeinterchangeably. Tasks can be ag- .
) L anacceptable allocation
gregated into larger tasks or split into subtasks. If the
load imposed by a task increases, the increase can thefinition: An acceptable allocationis a task distribu-
be treated as the arrival of a new task. Similarly, a loadlon where (1)no participant is above its capacity thresh-
decrease can be considered as the termination of a taskd, or (2) all participants are at or above their capacity
We discuss tasks further in Section 4. thresholds if the total offered load exceeds the sum of the
For each participant, the load imposed on its resourcespacity thresholds.
represents a cost. We define a real-valoest functiorof

each participant as:

We are given a system comprised of a sebf au-
tonomousparticipants each with computing, network,

Because the set of tasks changes with time, the alloca-
tion problem is an online optimization. Since the system
Vi € S, Vtaskset; C K, D;:taskset; R (1) is a federation of loosely coupled participants, no single
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entity can play the role of a central optimizer and the im-| 00. PROCEDURE OFFER._LOAD:
plementation of the mechanism must be distributed. We 01. repeat forever:

further examine the mechanism design aspects of our a2 Sort(contractset on price(contractset, ) ascending)
) . 03. foreach contraaf’; € contractset:
proach in Section 3.3. 04. offerset — 0
In our scheme, load movements are basetharginal 05. foreach task € taskset
costs MC; : (u,taskset;) — R defined as the incre- 83- t_?;?léloaj Tlt?SkZet —loffcelrset —{u} c
mental cost for nodé of running tasku given its current ' ! (u, total_load) > load(u) * price(C;)
> ) 08. offerset «— offerset U {u}
taskset;. Figure 1 shows the marginal castcaused by | go. if offerset = 0
adding loadr, when the current load iX.,,.. Assuming 10. offer — (price(C;), offerset)
the set of tasks imaskset; imposes a total load .., and 11. (resp, acceptset) « send.offer(j, offer)

. - . 12. if resp = accept and acceptset # ()
u imposes load:, thenMC(u, taskset;) = m. If z is one 13 transfer(j, price(C; ), acceptset)

unit of load, we calln theunit marginal cost 14, break foreach contract

. 15. wait{2 time units
3.2 Model and Algorithms

We propose a mechanism to achieve acceptable allo-  F19ureé 2:Algorithm for shedding excess load.

cations based on bilateral contracts: participants dstabl

contracts with each other by negotiating offline a set of

tightly bounded prices for each unit of load they will moveone algorithm for shedding excess load (Figure 2) and one
in each direction. for taking on new load (Figure 3).

The basic idea in shedding excess load is for an over-
loaded participant to select a maximal set of tasks from its
taskset; that cost more to process locally than they would
cost if processed by one of its partners and offer them to
that partner. Participants can use various algorithms and

Participants must mutually agree on what one unit of prOoolicies for selecting these tasks. We present a general al-
cessing, bandwidth, and storage represent. Differens pa@Orithm in Figure 2. If the partner accepts even a subset
of participants may have contracts specifying differen@f the offered tasks, the accepted tasks are transferred. An
unit prices. There is at most one contract for each pagverloaded participant could consider its contracts in any
of participants and each direction. Participants may per2rder. One approach is to exercise the lower-priced con-
odically renegotiate, establish, or terminate contraéts otracts first with the hope of paying less and moving more
fline. We assume that the set of nodes and contracts fori@sks. In this paper, we ignore the task migration costs.
a connected graph. The set of a participant’s contracts id1€se costs should, however, be considered before an of-
called itscontractset. We useC' to denote the maximum fer is sent by imposing a minimum threshold between the
number of contracts that any participant has. difference in the local and remote processing costs.

At runtime, participants that have a contract with each Procedur®OFFER_LOAD waits between load trans-
other may perfornioad transfers Based on their load fer§ to let Iocal_ load level estimations (e.g., exponelytial
levels, they agree on a definite unit prigesice(C; ;), Weighted moving averages) catch-up with the new aver-
within the contracted price-range, and on a set of task@gde load level. If no transfer is possible, a participant
the moveset, that will be transferred. The participant of- rétries to shed load periodically. Alternatively, the par-

fering load also pays its partner a sumpafice(C; ;) * ticipant may ask its partners to notify it when their loads
load(moveset). " decrease sufficiently to accept new tasks.

In procedureACCEPT_LOAD (Figure 3), each par-
ticipant continuously accumulates load offers and peri-
odically accepts subsets of offered tasks, examining the
We first present thefixed-price mechanismwhere higher unit-price offers first. Since accepting an offer re-
min_price(C; ;) = max_price(C; ;) = FixedPrice(C; ;). sults in a load movement (because offers are sent to one
With fixed-price contracts, if the marginal cost per unit ofpartner at the time), the participant keeps track of all ac-
load of a task is higher than the price in a contract, thepepted tasks in thpotentialset and responds to both ac-
processing that task locally is more expensive than payingepted and rejected offers. Participants that accept a load
the partner for the processing. Conversely, when a taskifer cannot cancel transfers and move tasks back when
marginal cost per unit of load is below the price specifiedoad conditions change. They can, however, use their own
in a contract, then accepting that task results in a greateontracts to move load further or to move it back.
payment than cost increase. There are several advantages in serializing communi-

Given a set of contracts, we propose a load manageation between participants rather than having them of-
ment protocol, where each participant concurrently runfer their load simultaneously to all their partners. The

Definition: A contract C; ; between participantsandj
defines a price rangémin_price(C; ; ), max_price(C; ;)],
that constrains the runtime price paid by participafdr
each unit of load given tg.

3.2.1 Fixed-Price Contracts
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00. PROCEDURE ACCEPT_LOAD: load. Any price below that maximum is acceptable. Fig-

8;- rer)e’cg foreveg ure 1 illustrates, for a single resource and a strictly con-
oo oters B . vex function, how a load leveK maps to a unit price.

03. for 2 time units or while(movement = true) . L . ;

04. for each new offer receivedew_offer: In general, this price is the gradient of the cost function

05. offers « offers U {new_offer} evaluated afX .

83- Sortt(otf_fefs on Préce(offersi) descending) When a participant negotiates a contract to accept load,
. potentialset «— . . . . ..

08 foreach offep; ¢ offers th_e same maximum price rule applies since the pamupqnt

09. acceptset «— 0 will never be able to accept load once it is overloaded it-

10. foreach task: € offerset (o;) self. A participant, however, should not accept a price that

11 totalload « taskset U potentialset U acceptset | 5 tgg low because such price would prevent the partici-

12. if MC(u, total_load) < load(u) * price(o;) tf ti load th h it might still

13 acceptset  acceptset U {u} pant from accepting new load even though it might still

14, if acceptset # 0 have spare capacity. The participant should rather esti-

15. potentialset + potentialset U acceptset mate its expected load level, select a desired load level

16. resp «— (accept, acceptset) between the expected and maximum levels and negotiate

17. movement < true h di .

18, elseresp — (reject, 0) the corresponding contract price. .

19. respond(o;, resp) Participants may be unwilling to move certain tasks to

some partners due to the sensitive nature of the data pro-
cessed or because the tasks themselves are valuable in-
tellectual property. For this purpose, contracts can also
specify the set of tasks (or types of tasks) that may be
moved, constraining the runtime task selection. In offline
agreements, participants may also prevent their partners
from moving their operators further thus constraining the
partner’s task selections.

To ensure that a partner taking over a task provides
enough resources for it, contracts may also specify a mini-
mum per-message processing delay (or other performance
metric). A partner must meet these constraints or pay a
monetary penalty. Such constraints are commonplace in

Figure 4:Three load movement scenarios for two partners. SLAs used for Web services, inter-company workflows
or streaming services [18]. Infrastructures exist to en-
force them through automatic verification [3, 21, 37, 38].
communication overhead is lower but most importantlyin the rest of this paper, we assume that such infrastruc-
the approach prevents possible overbooking as partnetge exists and that monetary penalties are high enough
always receive the load they accept. This in turn allowso discourage any contract breaches. To avoid breaching
participants to accept many offers at once. The only draveontracts when load increases, participants may prieritiz
back is a slightly longer worst-case convergence time. tasks already running over newly arriving tasks.

Figure 4 illustrates three load movement scenarios. If
participant4 has one or more tasks for which its margina
cost per unit of load exceeds the price in its contract wit
B, these tasks are moved in a Single transfer (Scenarioq::lxed-price contracts do not a|WayS produce acceptab|e
and 2). Only those tasks, however, for which the marging|iocations. For instance, load cannot propagate through
cost per unit of load aB does not exceed the price in thea chain of identical contracts. A lightly loaded node in the
contract are transferred (scenario 3). middle of a chain accepts new tasks as long as its marginal
cost isstrictly belowthe contract price. The node even-
tually reaches maximum capacity (as defined by the con-
tract prices) and refuses additional load. It does not offer
With an approach based on fixed prices, the only tunablead to partners that might have spare capacity, though,
parameters are the unit prices set in contracts. Whenbecause its unit marginal cost is still lower than any of its
participant negotiates a contract to shed load, it must firgbntract prices. Hence, if all contracts are identical s ta
determine its maximum desired load levé] and the cor- can only propagate one hop away from its origin.
responding marginal cost per unit of load. This marginal To achieve acceptable allocations for all configura-
cost is also the maximum unit price that the participantions, participants thus need to specifgmall range of
should accept for a contract. For any higher price, therices [FixedPrice — A; FixedPrice], in their contracts.
participant risks being overloaded and yet unable to shesuch price range allows a participant to forward load from

Figure 3:Algorithm for taking additional load.

Load
Level

Single
Load
Movement

-5y~ Contract

Scenario 1 Scenario 2 Scenario 3

:%3.2.3 Extending the Price Range

3.2.2 Setting Up Fixed-Price Contracts
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an overloaded partner to a more lightly loaded one by ac- | oaqg
cepting tasks at a higher price and offering them at a lower -eve!
price. When a contract specifies a small price-range, for
each load transfer, partners must dynamically negotiate

the final unit price within the range. Since a fixed unit 3

price equals the gradie_nt (or derivative) of_ the cost curve g ——————————————————— 1 Contract
at some load level, a price range convertsintoaload level "' [ 1] v T el

interval as illustrated in Figure 1. The price range is the E ﬁ

difference in the gradients of the cost curve at interval A B A B A B

boundaries. Movement 1 Movements 2,3  Final Assignment
We now derive the minimal contract price-range that.. ] .

ensures convergence to acceptable allocations. We a gure 5:Load movements between three nodes using a small

L . rice-range.

lyze a network of homogeneous nodes with identical corf

tracts. We explore heterogeneous contracts through sim-

ulations in Section 5. For clarity of exposition, we also  For underloaded systems to always converge to accept-

assume in the analysis that all tasks are identical to thghle allocations, tasks must be able to travel as far as the

smallest migratable task,andimpose the same loaVe  diameterM of the network of contracts. The minimal

o|p[o]o]

useku to denote a set of tasks. price range should then g, _; (taskset).
We define);, as the decrease in unit marginal cost due
to removingk tasks from a node’saskset: Lemmal In a network of homogeneous nodes, tasks,

and contracts, to ensure convergence to acceptable
allocations in underloaded systems, the unit price
(2) range in contracts must be at least{FixedPrice —

51, is thus approximately the difference in the cost funcdar—1(taskset™), FixedPrice], where M is the diam-
tion gradient evaluated at the load level including and exeter of the network of contracts anthskset” is the
cluding thek tasks. set of tasks that satisfiedIC(u,taskset? — u) <

Given a contract with priceFixedPrice, we define load(u)  FixedPrice andMC (u, taskset™) > load(u)
taskset” as the maximum set of tasks that a node cahixedPrice.

handle before its per-unit-load marginal cost exceeds ) )
FixedPrice and triggers a load movement. |.eagkset” When the system is overloaded, a price range does

satisfies:MC(u, taskset? — u) < load(u) * FixedPrice not lead to an acceptable-aIIFocatlon (Whétfe <
andMC(u,tasksetF) > 10&(1(11) % FixedPrice. S .Z Di(taskseti). Z Di(taskseti )) In the final allo-

With all contracts in the system specifying the sam&ation, Some participants may have a marginal cost as low
price range, [FixedPrice — A, FixedPrice| such that 2@SFixedPrice — o (taskset; ) (wider ranges do not im-
A = § (tasksetF), any task can now travel two hops. Prove this bound). For_ overloaded systems, price-range
A lightly loaded node accepts tasks BitcedPrice until coqtracts therefore achievearly acceptable allocations
its load reaches that ahskset™. The node then alter- defined as:
nates between offering one taglat priceFixedPrice — L . -
51 (taskset? ) and accepting one task BtxedPrice. This Dgflnltlon. A nearly acceptable allocation satisfies

o C L Vi € S : D;(taskset;) > D;(taskset! — Mu)

scenario is shown in Figure 5. Similarly, for load to travel 1
through a chain of\/ + 1 nodes (orM transfers) the
price range must be at least; ; (taskset!). The jth
node in such a chain alternates between accepting a t

MC(u, taskset — u) — MC(u, taskset — (k + 1)u)

O (taskset) = Toad (u)

Price ranges modify the load management protocol as
follows. Initial load offers are made at the lowest price.
i - H %10 task can be accepted, the partner proposes a higher
at priceFixedPrice — d; 1 (taskset”™) and offering it at e Upon receiving such a counter-offer, if the new
price FixedPrice — 0 (taskset"). price is still its best alternative, a participant recongsut

A larger price range speeds-up load movemenigq oot If the set is empty, it suggests a new price
through a chain because more tasks can be moved;at, i, Negotiation continues until both parties agree on

each step. With a larger price range, however, nodes unjt yrice or no movement is possible. Other negotiation
marginal costs are more likely to fall within the dynamicg-hemes are possible.

range requiring a price negotiation. A larger range thus

increases runtime overhead, price volatility and the nung.3  Properties

ber of re-allocations caused by small load variations. Our

goal is therefore to keep the range as small as possible andThe goal of mechanism design [33] is to implement an
extend it only enough to ensure convergence to acceptaldptimal system-wide solution to a decentralized optimiza-
allocations. tion problem, where each agent holds an input parameter
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to the problem and prefers certain solutions over otherslistributed: there is no central optimizer, and (2) algo-
In our case, agents are participants and optimization pathmic: the computation and communication complexi-
rameters are participants’ cost functions and origina seties are both polynomial time, as we show below. Be-
of tasks. The system-wide goal is to achieve an acceptalilause our mechanism is indirect, it differs from previous
allocation while each participant tries to optimize itd-uti DAMD approaches [12, 14] that focus on implementing
ity. Our mechanism isndirect participants reveal their the same payment computation as would a central opti-
costs and tasks indirectly by offering and accepting tasksizer but in an algorithmic and distributed fashion. An
rather than announcing their costs directly to a central opmportant assumption made in these implementations is
timizer or to other agents. that agents are either separate from the entities comput-
A mechanism defines the set of strategieavailable ing the payment functions [14] or that they compute the
to agents and an outcome rule; SN — O, that maps payments honestly [12]. Our mechanism does not need to
all possible combinations of strategies adopted by agentsake any such assumption.
to an outcome&). With fixed-price contracts, the runtime  Because each load transfer takes place only if the
strategy-space of participants is reduced to only three posarginal cost of the node offering load is strictly greater
sible strategies: (1) acceptload at the pre-negotiated pri than that of the node accepting the load, successive allo-
(2) offer load at the pre-negotiated price, or (3) do neieations strictly decrease the sum of all costs. Under con-
ther® The desired outcome is an acceptable allocation. stant load, movements thus always eventually stop. If all
Similarly to the definition used in Sandholrat. participants could talk to each other, the final allocation
al. [40], our mechanism imdividual rational(i.e., a par- would always be acceptable aRdreto-optimal i.e., no
ticipant may not decrease its utility by participating) on aagent could improve its utility without another agent de-
per load movement basis. Each agent increases its utilityeasing its own utility. In our mechanism, however, par-
by accepting load when the price exceeds the per-uniticipants only exchange load with their direct partners and
load marginal cost (because in that case the increasethms property does not hold. Instead, for a given load, the
payment,p;, exceeds the increase in cogl;) and offer bounded-price mechanism limits the maximum difference
load in the opposite situation. For two agents and onia load levels that can exist between participants once the
contract this strategy is alstbminantbecause compared system converges to a final allocation. If a node has at
to any other strategy, it optimizes an agent’s utility indefeast one task for which the unit marginal cost is greater
pendently of what the other agent does. than the upper-bound price of any of the node’s contracts,
For multiple participants and contracts, the strategyhen all its partners must have a load level such that an
space is richer. Participants may try to optimize their-utiladditional task would have an average unit marginal cost
ity by accepting too much load with the hope of passingreater than the upper-bound price in their contract with
it on at a lower price. Assuming, however, that particithe overloaded node. If a partner had a lower marginal
pants are highlyisk-averse they are unwilling to take on cost, it would accept its partner’s excess task at the con-
load unless they can process it at a lower cost themselvigacted price. This property and the computation of the
because they risk paying monetary penalties, the strategyinimal price ranges yield the following theorem:

of offering and accepting loadnly when marginal costs
are strictly higher or lower than prices respectively, is ar;l'heorem 2 If nodes, contracts and .tasks are homoge-
eous, and contracts are set according to Lemma 1, the

optimal strategy. This strategy is not dominant, though, | allocation i table allocation f q
because it is technically possible that a participant has ipal aflocation 1S an acceptable aflocation for under-

partner that always accepts load at a low price. In specif,8aded systems and a nearly acceptable allocation for

situations, the order in which participants contact eaCRverIoaded systems.
other may also change their utility due to simultaneous |n Section 5, we analyze heterogeneous settings using
moves by other participants. simulations and find that in practice, nearly acceptable al-
These properties also hold for price-range contractpcations are also reached in such configurations.
when participants’ marginal costs are far from range Another property of the fixed-price mechanism is its
boundaries. Within a range, participants negotiate, thifast convergence and low communication overhead. Task
revealing their costs more directly. Reaching an agregelection is the most complex operation and is performed
ment is individual-rational since moving load at a pricepnce for each load offer and once for each response.
between participants’ marginal costs increases both thefherefore, in a system with N overloaded participants,
utilities. Partners thus agree on a price within the rang&nder constant load, in the best case, all excess tasks re-
when possible. quire a single offer and are moved in parallel, for a conver-
Our mechanism is also a distributed algorithmic mechgence time o©(1). In the worst case, the overloaded par-
anism (DAM) [12, 14] since the implementation is (1)ticipants form a chain with only the last participant in the
chain having spare capacity. In this configuration, partici
3\We exclude the task selection problem from the strategyespac ~ pants must shed load one at the time, through the most ex-
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pensive of theilC' contracts, for a worst case convergence o 2P © Q)
. vpn . . indow Stream - .
time of O(NC). If nodes use notifications when they fail . |7 " 'e(b) S, = | Active clusters
to shed load, the worst-case is reduce@taV + C'). For ~ summaries| —— Groupby \ = =

sum
srcIP L]

Active sources

auctions, the worst-case convergence tim@(i87) in this count | [0 T vedusasAurora Node Participant 1
configuration. To summarize: T eiipant 2
Lemma 3 For N nodes with at most’ contracts each, © o F4>Active and”
. . . . many protocols

the fixed-price mechanism has a convergence tim¥ bf Tsot et Aot Fiter ; oo
protocol coun Medusa/Aurora Node| many protocols

in the best case an@ (N + C) in the worst case if notifi-
cations are used.

] ) ) Figure 6:Example of a distributed Medusa query.
With our mechanism, most load movements require as

few as three messages: an offer, a response, and a load

movement. The best-case communication complexity is

thusO(N). In contrast, an approach based on auctiongggregated bgperatorsto produce outputs of interest. A
has a best-case communication overhead(N(C) if datastream is a continuous sequence of attribute-value tu-
the auction is limited ta” partners and)(N?) if not.  ples that conform to some pre-defined schema. Operators
If the whole system is overloaded and participants mustre functions that transform one or more input streams
move load through a chain of most-expensive contract#§)to one or more output streams. A loop-free, directed
the worst-case complexity may be as highsV2C), graph of operators is calledcantinuous querybecause it
mostly because each participant periodically tries to shegbntinuously processes tuples pushed on its input streams.
load. If, however, the notifications described above are Stream processing applications are naturally dis-
used, the worst-case communication overhead is oniyibuted. Many applications including traffic management
O(NC). The same worst-case communication overheaadnd financial feed analysis process data from either ge-
applies to auctions. In summary: ographically distributed sources or different autonomous

i i organizations. Medusa uses Aurora [1] as its query pro-
Lemma 4 To converge, the fixed-price contracts mechzessor, Medusa takes Aurora queries and arranges for

anism imposes a best-case communication overhead @ikm 1o be distributed across nodes and participants, rout-

Q(N) and a worst-case overhead 6f NC) if notifica- ing tuples and results as appropriate.

tions are used. Figure 6 shows an example of a Medusa/Aurora query.
Compared to auctions, our scheme significantly reln€ query, inspired from Snort [36] and Autofocus [11],

duces the communication overhead, for a slight incread® @ Simple network intrusion detection query. Tuples on
in worst-case convergence time. Simulation results (SellPut streams summarize one network connection each:
tion 5) show that the convergence time is short in practic€°urce and destination IPs, time, protocol used, etc. The
When contracts specify a small price-range, most loa8Uery identifies sources that are either active (operators
movements take place outside of the range and the me¢h@ndb) or used abnormally large numbers of protocols
anism preserves the properties above. If, however, the o}%th'” a short time period (operatoes andf ) or both
timal load allocation falls exactly within the small price- (OP€ratorg). The query also identifies clusters of ac-
range, final convergence steps require more communiciiye sources (operators andd). To count the number
tion and may take longer to achieve, but at that poin®f connections or protocols the query appliesdowed
the allocations are already acceptable. When load is fofd9regateoperators§, ¢, ande): these operators buffer
warded through a chain, the complexity grows with th&onnection information for a time peridd, group the in-

length of the chain and the amount of load that needs f@'mation by source IP and apply the desired aggregate

be forwarded through that chain. In practice, though, lonff'nction. Aggregate values are thétiered to identify
e desired type of connections. Finally, operaqoins

chains of overloaded nodes are a pathological, thus rare,

configuration. active sources with those using many protocols to identify

sources that belong in both categories.

The phrases in italics in the previous paragraph corre-
spond to well-defined operators. While the system allows

In this section, we describe the implementation ofiser-defined operators, our experience with a few appli-
the bounded-price mechanism in the Medusa distributezhtions suggests that developers will implement most ap-
stream-processing system. plication logic with built-in operators. In addition to sim
plifying application construction and providing query op-
timization opportunities, using standard operators Facil

In_stream-processing applicationdata streamsro- tates Medusa’s task movements between participants.
duced by sensors or other data sources are correlated andviedusa participants usemote definitiongo move

4 System Implementation

4.1 Streams and Operators
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Vedusa Nod min # of contracts | 1 3 5 7 9 10
edusa Node
QueryProcessor max # ofcontracts| 11 13 14 15 17 18
Local Partition of (Aurora) avg diameter 19 8 6 5 4 4
Distributed Brain
Catalog (Lookup) .
10Queues Table 1:Max number of contracts per node and network diam-
I I I I eter for increasing min numbers of contracts.
DHT Transport Independent RPC
(Chord) (XML-RPC, TCP-RPC, Local)
T £ 5 Evaluation
Control D‘a’ta

In previous sections, we showed some properties of
Figure 7:Medusa software structure. our mechanism and computed the best- and worst-case
complexities. In this section, we complete the evaluation
using simulations and experiments. We first examine the
tasks with relatively low overhead compared to full-blownconvergence to acceptable allocations in a network of het-
process migration. Remote definitions specify how operrogeneous nodes. We simulate heterogeneity by setting
ators on different nodes map on to each other. At runtimeontracts at randomly selected prices. Second, we study
when a path of operators in the boxes-and-arrows diagratine average convergence speed in large and randomly cre-
needs to be moved to another node, all that's required &ed topologies. Third, we examine how our approach to
for the operators to be instantiated remotely and for the ifread management reacts to load variations. Finally, we
coming streams to be diverted to the appropriately namezkamine how Medusa performs on a real application by
inputs on the new node. Our current prototype does netinning the network intrusion detection query, presented
move operator state. The new instance re-starts the com-Section 4, on logs of network connections.
putation from an empty state. We plan to explore moving We use the CSIM discrete event simulator [26] to study
operator state in future work. a 995-node Medusa network. We simulate various ran-
For stream-processing, the algorithm for selectinglom topologies, increasing the minimum number of con-
tasks to offload to another participant must take into adracts per node, which has the effect of reducing the diam-
count the data flow between operators. It is preferable teter of the contract network. To create a contract network,
cluster and move together operators that are linked witheach node first establishes a bilateral contract with an al-
high-rate stream or even simply belong to the same comeady connected node, forming a tree. Nodes that still
tinuous query. In this paper we investigate the generédave too-few contracts then randomly select additional
federated load management problem and do not take golrtners. With this algorithm, the difference between the
vantage of possible relations between tasks to optimizaeumbers of contracts that nodes have is small, as shown
their placement. In stream processing it is also often pofa Table 1.
sible to partition input streams [41] and by doing so han- Each node runs a set of independent and identical op-
dle the load increase of a query network as a new quesgrators that process tuples at a cost of /&0uple. We

network. We make this assumption in this paper. set the input rate on each stream to 500 tuples/s (or
) 500 KBps). Assuming that each node has one 100 Mbps
4.2 Medusa Software Architecture output link, each operator uses 4% of the bandwidth and

) 2.5% of CPU. We select these values to model a reason-
Figure 7 shows the Medusa software structure. Eacty e minimum migratable unit. In practice, tasks are not

Medusa node runs one instance of this software. The[fitorm and the amount of resources each task consumes
are two components in addition to the Aurora query proponds how close a participant's marginal cost can get to
cessor. The first component, calledokup , is a client 5 coniract price without crossing it. When we examine
of an inter-node distributed catalog (implemented usingonvergence properties, we measure overload and avail-

a distributed hash table [42]) that holds information orp o capacity in terms of the number of tasks that can be
streams, schemas and queries running in the system. Thy

i - < ered or accepted, rather than exact costs or load. All
Brain  component monitors local load conditions by pey,qes yse the same convex cost function: the total num-
riodically asking theQueryProcessor  for the aver-

X ber of in-flight tuples (tuples being processed and tuples
age input and output rates m_easured by ltbQueues _ awaiting processing in queues).
(which serve to send and receive tuples to and from clients

or other Medusa nodes) as well as for rough estimates 81 Convergence to Acceptable Allocations

the local CPU utilization of the various operatoB8ain |y s section, we study load distribution properties for

uses this load information as input to the bounded-pricenyorks of heterogeneous contracts. We compare the re-

mechanism that manages load. sults to those achieved using homogeneous contracts and
4The semantics.of many-stream-processing applications aretsat  SNOW that our approach quks We.” in heterogeneous sys-

occasional tuple drops are acceptable [2]. tems. We also simulate fixed-price contracts and show
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Contracts | Price Selection

Fixed Vi € S : [taskset]| = 14 operators

Vi,j € S : price(Ci ;) = MC(u, taskset!’ — u)
Range Vi,j €S :

max_price(C; ;) = MC(u, taskset? — u)
min_price(C;,;) = max_price(Cy ;) — A

A = §2(tasksetl)

i.e., the range is [MC 12th op,MC 14th op]
Random | Vi€ S : [tasksetY| € [120ps, 180ps]

Vi, j € Sif [taskset!| < |tasksetJF|

price(C; ;) = MC(u,tasksotiF —u)
Random Vi,j € S : max price same as for Random 0123456 7 8 91011
Range min_price(C;,;) = max_price(Cy ;) — A Minimum Number of Contracts

A = §2(tasksetl)

2500 ———

‘ E)‘(CES‘:S L‘oad

2000

1500 ¢ Random Range
Range
Random Fixed

Fixed

1000

Number of Tasks

500

Figure 8:Excess load for the final allocation in an underloaded
network of 995 nodes. First column shows excess load before
any load movement.

Desired result | Initial Load Allocation
underload 299 nodes with 22 ops

696 nodes with 7.7 ops on avg
Overall average 12 ops/node
overload 299 nodes with 22 ops

696 nodes with 12.0 ops on avg 2000 ‘ " "Excess Capacity
Overall average 15 ops/node 1800 | §§§ 1
: X . . 2 1?88 §§§ Random Range
Table 2: Simulated configurations. u is one operator. E 1200 §§§ Range
b2 (taskset™) is defined in Section 3.2.3. - W Random Fixed
S 1000 | NN
5 [ AW
g 800 | \\
that such contracts have good properties in practice, even 400 | §§§
though they do not always lead to acceptable allocations. 200 ¢ §§§ \n
. 0 AR NN AN
We thus_ study and compare _the conyergence properties 012345678 91011
of four variants of the mechanism: (E)xed, where all Minimum Number of Contracts

contracts set an identical fixed-price, Z)nge, where all
contracts are uniform but define a small price-range, (3Jigure 9:Left-over capacity for the final allocation in an over-
Random Fixed, where contracts specify fixed but ran-loaded network of 995 nodes.
domly chosen prices, andandom Range, where con-
tracts define randomly selected price-ranges. Table 2
summarizes the price selection used for each type of cogXcess load or exploit a larger amount of available capac-
tract. We limit price ranges to the variation in marginality- With a minimum of 10 contracts, nodes successfully
cost resulting from moving only two tasks. This range igedistribute over 99% of excess load in the underloaded
much smaller than required in theory to ensure acceptabf§enario and use over 95% of the initially available ca-
allocations: the range is half the theoretical value for th@acity in the overloaded case. The system thus converges
smallest network diameter that we simulate (Table 1). toan allocation close to acceptable in both cases. Hence,
Starting from skewed load assignmentS, as summé&ven thOUgh they do not work well for SpeCiﬁC Configura—
rized in Table 2, we examine how far the final allocatiorfions (as discussed in Section 3.2.3), fixed-price corgract
is from being acceptable. For an underloaded system, v#&"n lead to allocations close to acceptable for randomly
measure the total excess load that nodes were unabled@nerated configurations.
move (Figure 8). For an overloaded system, we measure We re-run all simulations replacing fixed prices with a
the unused capacity that remains at different nodes (Figice range and observe the improvement in final alloca-
ure 9F. In both figures, the column with zero minimum tion. We choose the price range to fall within the two load
number of contracts shows the excess load and availadfvels of 12 and 15 operators per node (Table 2, variant
capacity that exist before any reallocation. Range). The results, also presented in Figures 8 and 9,
With the Fixed variant of the mechanism, we exam-Show that a minimum of seven contracts achieves an ac-
ine the properties of an underloaded system whose fixs@ptable allocation. At that moment, the diameter of the
contract prices are above the average load level and thodgtworkis five (Table 1) so the price-range is half the the-
of an overloaded system where prices are below avera§éetically required value. When the system is overloaded,
load. As shown in Figures 8 and 9, as the number dVer 98% of available capacity is successfully used with
contracts increases, the quality of the final allocation im& Minimum of 10 contracts per node. Additionally, nodes

proves: nodes manage to reallocate a larger amount B¢low their capacity have room for only one additional
operator. The final allocation is thus nearly acceptable,

S5Each result is the average of nine simulations. as defined in Section 3.2.3. This result shows that price
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contracts. range contracts.

Figure 10:Convergence speed in an underloaded network of 995 nodes.

ranges, even smaller than the theoretically computed vé.2 Convergence Speed

ues, suffice to achieve acceptable or nearly acceptable al- )

In practice, contracted prices will be heterogeneoudime in the underloaded network of 995 nodes with a min-

We thus simulate the same network of contracts agalf?um of five contracts per node. In the simulation, each
but with randomly selected priceBgndom Fixed vari- node tried to move load at most once every 2 seconds
ant). To pick prices, each participant randomly selects 10 movements were allowed within the first 5 seconds
maximum capacity between 12 and 18 operators. Whe _the simulation). For all variants, the cost deprgases
two participants establish a contract, they use the low&lickly and reaches values close to the final minimum
of their maximums as the fixed price. We find that ranWithin as few as 15 seconds of the first load movement.
dom fixed-price contracts are less efficient than homogdis fast convergence is partly explained by the ability
neous contracts but they also achieve allocations close %the bounded-price mechanism to balance load between
acceptable (94% of excess load is re-allocated with 1@y pair of nodes in a single iteration and partly by the
contracts as shown in Figure 8). Because we measu@®ility of our mechanism to balance load simultaneously
the capacity at each node as the number of operators tgtmany locations in the network. Fixed-price variants
the node can accept before its marginal cost reaches hgve a som_ewhatsharper decrease while also leading to a
highest contracted price, when the number of contracf§@! allocation close to acceptable.
increases, so does the measured capacity. This in turn Figures 10(b) and (c) show the convergence speed
makes heterogeneous-price contracts appear less efficiéigasured as the number of load transfét®{ements)
than they actually are at using available capacity. Thand the number of operators moved for homogeneous
range of prices from which contracts are drawn is sucfontracts (rar_1d0m prices produce almost identical trends)
that when each node has at least three contracts, the iffer both variants, the first load movements re-allocate
tially available capacity is roughly the same as with hoMmany operators, leading to the fast decrease in the total
mogeneous contracts. cost in early phases of the convergence. Fixed-price con-
Finally, we explore heterogeneous price ranges b{facts converge faster than price-range contracts because
adding a lower price bound to each randomly chosef10re operators can be moved at once. The convergence
fixed price Random Range variant). As shown in Fig- alllso.stops more quickly but., as shown gbove, the alloca-
ures 8 and 9, heterogeneous price-range contracts hal@ is slightly worse than with a small price range.
similar properties to the uniform price-ranges. The finalj
allocation is slightly worse than in the uniform case be-
cause nodes with small capacity impede load movements Next, we examine how the mechanism responds to
through chains and measured capacity increases with tggqden step-shifts in load. A bad property would be for
number of contracts. We find, however, that in the unsma|| step shifts in load to lead to excessive re-allocation
derloaded case nodes were at most 2.1 operators abayg subject a network of 50 nodes (with a minimum of
their threshold (average of multiple runs) and in the undeghyree fixed or three price-range contracts per node) to a
loaded case nodes had at most capacity left for 2.5 op&jgdden load increase (at time 60 sec) and a sudden load
ators. Heterogeneous prices thus lead to allocations cloggcrease (at time 120 sec). We run two series of exper-
to acceptable ones. iments. We first create a large variation with 30% extra

.3 Stability under Changing Load
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(a) Large load variation with price range:
30% extra load.

(b) Small load variation with price range:
15% extra load.

(c) Large load variation with fixed prices:
30% extra load.

Figure 11:Assignment stability under variable load. Load added ate&0asmd removed at 120 sec.

load (10 extra operators each to 10 different nodes). We
then repeat the experiment adding only 15% extra load.
Figure 11 shows the total cost and operator movements
registered during the simulation. Node 1
A 30% load increase, concentrated around a few nodes, L
makes these nodes exceed their capacity leading to a few L Operator
re-allocations both with fixed prices and price ranges. ‘
Fixed prices, however, produce fewer re-allocations be-
cause convergence stops faster. When load is removed,
spare capacity appears. If nodes use a price range, a
small number of re-allocations follows. With fixed-prices,
since nodes all run within capacity before the load is re-
moved, nothing happens. The 15% load increase leads

to an almost insignificant number of movements €VeHemory. The nodes communicate over a 100 Mbps Eth-
when a sm_all price-range IS used._ I_ndeed_, f_ewer “0‘?'%$net. All clients are initially on the same machines as
exceed their capacity and load variations within capacity, - nodes running their queries. All Medusa nodes have

do not lead to re-allocations. Both variants of the mechg, oy rice contracts with each other and are configured
anism thus handle load variations without excessive 85 take or offer load every 10 seconds

allocations.

Node 2

13/

Interm.
Node

MIT 8X
trace

! Operator
' Movement

P

Client
App

213}

MIT
trace

8X

Interm.

Node Node 0

Client
App
Utah
trace

20X

Figure 12:Experimental setup.

Figure 13 shows the results obtained. Initially, the load
at each node is approximately constant. At around 650
seconds (1) the load on the Utah trace starts increasing

We evaluate our prototype on the network intrusion deand causes Node 0 to shed load to Node 1, twice (on Fig-
tection query (with 60 sec windows and without the finaure 13 these movements are labeled (2) and (3)). After
join) running on network connection traces collected athe second movement, load increases slightly but Node 1
MIT (1 hour trace from June 12, 2003) and at an ISP imefuses additional load making Node 0 move some oper-
Utah (1 day trace from April 4, 2003). To reduce the posators to Node 2 (4). The resulting load allocation is not
sible granularity of load movements, we partition the Utatuniform but it is acceptable. At around 800 seconds (5),
log into four traces that are streamed in parallel, and thdode 1 experiences a load spike, caused by an increase
MIT log into three traces that are streamed in parallel. Tin load on the MIT trace. The spike is long enough to
increase the magnitude of the load, we play the Utah tracause a load movement from Node 1 to Node 2 (6), mak-
with a 20x speed-up and the MIT trace with ax&peed- ing all nodes operate within capacity again. Interestingly
up. after the movement the load on Node 1 decreases. This

Figure 12 illustrates our experimental setup. Nodelecrease does not cause further re-allocations as the allo-
0 initially processes all partitions of the Utah and MITcation remains acceptable.
traces. Nodes 1 and 2 process 2/3 and 1/3 of the MIT In our experimental setup, it takes approximately
trace, respectively. Node 0 runs on a desktop with a Pefi5 ms to move a query fragment between two nodes. Each
tium(R) 4, 1.5GHz and 1GB of memory. Nodes 1 and 2Znovement proceeds as follows. The origin node sends to
run on a Pentium Ill TabletPC with 1.33GHz and 1GB othe remote node a list of operators and stream subscrip-

5.4 Prototype Experiments
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8000 p close to acceptable in other cases. Compared to previous

approaches, this mechanism gives participants control and
privacy in their interactions with others. Contracts allow
participants not only to constrain prices but also practice
price discrimination and service customization. The ap-
proach also has a low runtime overhead.

Participants have flexibility in choosing contract
prices. We show that even randomly chosen prices

70001 i 1
'
5000/ .
4000 | -
3000}

Load (messages/sec)

2000

1000k _node2 J from a wide range achieve allocations close to accept-
ol ‘ ‘ ‘ L able. We suggest, however, that participants first negoti-
630 660 690 %nge (ng)o 780 810 840 ate relatively high fixed-price contracts to maximize their

chances of shedding excess load while minimizing run-
lyme overhead and only later negotiate additional con-
tracts with lower prices. Additionally, if participants no
tice that they often stand between overloaded and under-
loaded partners, they should re-negotiate some of their
tions (i.e., a list of client applications or other Medusacontracts to cover a small price-range and make a small
nodes currently receiving the query output streams). Therofit by forwarding load from their overloaded to their
remote node instantiates the operators locally, substrib@nderloaded partners.
itself to the query input streams, starts the query, and sets Although the load management mechanism introduced
up the subscriptions to the output streams. After the rén this paper is motivated by federated distributed stream
mote query starts, the origin node drains accumulated tgrocessing, it also applies to other federated systems such
ples and deletes the query. Both nodes update the catal@ggweb services, computational grids, overlay-based com-
asynchronously. When a query moves, client applicationsuting platforms, and peer-to-peer systems.
see a small number of duplicate tuples because the new |n this paper, we did not address high availability. Be-
query starts before the old one stops. They may also seguse each participant owns multiple machines, partici-
some reordering if the origin node was running behingant failures are rare. We envision, however, that if the
before the move. participant running the tasks fails, it is up to the original
In our currentimplementation, we do not send the statgodes to recover the failed tasks. If the original partiipa
of operators to the remote location. This approach workgiils, though, the partner continues processing the tasks
well for all stateless operators such figer, map and until the original participant recovers. Contracts could
union as well as for operators that process windows ofilso specify availability clauses. We plan to investigate
tuples without keeping state between windows (&M);  high availability further in future work.
dowed joinsand some types adiggregates For these
latter operators, a movement disrupts the computatiol&
over only one window. For more stateful operators, we

should extend the movement protocol to include freezing \ye thank Rahul Sami for many invaluable suggestions.
the state of the original query, transferring the query withpe thank Jaeyeon Jung and Dave Andersen from MIT,

that state, and re-starting the query from the state at thq Noah Case from Syptec, for providing us the network
new location. We plan to explore the movements of statgpnnection traces.

ful operators in future work.

Figure 13: Load at three Medusa nodes running the networl
intrusion detection query over network connection traces.
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